Showing posts with label mathematics. Show all posts
Showing posts with label mathematics. Show all posts

Thursday, May 21, 2015

Random Curiosities (II)

Again a full reading list that I've compiled, the most interesting items are selected for the 'random curiosities' of this week. It seems to me that these lists will surely help me to keep track of my readings and interests over time and it will be definitely interesting to look back..


  • The first item on the list is a great documentary I've watched recently which is called 'The Emergence of Network Science' featuring Steven Strogatz. It is mainly focused on graphs and especially the famous 'six-degree of seperation' problem and gives the new emerging science of networks. I've met many new names from the film and one of the major ones is A. Barabasi and his wonderful new book 'Network Science'. It is published online and it seems like a great resource. I will definitely check it out before the 'Applied Graph Theory' course in Nesin Matematik Village which I'll be participating this summer.
  • A game-theoretical ecological article called 'The hawk–dove game in a sexually reproducing species explains a colourful polymorphism of an endangered bird' in the recent issue of Proceedings of the Royal Society B. It examines the famous 'hawk-dove game' behaviour in the Gouldian finches population and derives the conditions for the evolutionary beneficial polymorphism to be retained in the population. Link for the article.
  • A recent article from C. Veller and M. Nowak titled "Extended flowering intervals of bamboos evolved by discrete multiplication" which is about the mathematical pattern involving the flowering of bamboo plants (Link for the article). There is a nice overview of the paper called 'Bamboo Mathematicians' in Carl Zimmer's blog.
  • From New York Times, an article on mathematical population model of blue crabs in Chesapeake Bay which is based on a field data: Mathematicians and Blue Crabs
  • Another interesting article on the models of evolutionary mechanism from Yale which proposes “house of cards” model — which holds that mutations with large effects effectively reshuffle the genomic deck — explains evolutionary processes better than the theory that species undergo the accumulation of many mutations with small effects. Further read: In evolution, ‘house of cards’ model wins
  • Quanta Magazine has published an interesting article about genetically identical flies and their diverging individual behaviours studied through genetic and environmental variations. Details in the article: 'Animal Copies Reveal Roots of Individuality'
  • Nautilus is running a very interesting theme this month: 'Error' with a sub-title "How does the scientist negotiate the hall of mirrors and come out clutching the truth?..." Worth checking out..
  • An inspiring read from the great mathematician V. I. Arnold 'On Mathematics Education' from the archives of Dynamical Systems Magazine.
  • Book find of the weekA Mathematical Nature Walk by John A. Adam. Full of wonderful questions about various natural phenomena and inspiring models and answers for them. Definitely a gem. (Book link)

Friday, April 10, 2015

Constructing a Cantor Set

Seemingly basic and simple things generally proves to be really really complex if we are talking about real numbers. We had a discussion of one of them in our recent class which I've been following this semester as a guest student. The class is an introduction course for beginner physics undergraduates to rather abstract and mathematical notions and related theoretical physics problems. For instance, we have started with a simple billiard problem and we ended up counting the real numbers and who knows where we will end up... Today our stop was famous Cantor Set.

We construct the Cantor Set by basically dividing the closed interval $[0,1]$ into equal 3 parts and leaving the middle part out. Then we continue the same process to the remaining two parts, i.e to the intervals $[0,\frac{1}{3}]$ and $[\frac{2}{3},1]$ and iterate for infinitely many times. After several steps the picture looks more or less like this:


Let us name the intervals left in each step as sets $C_0, C_1, C_2, ..., C_n$ where $n$ denote the steps starting with $0$ and runs to $n$.. For instance: $C_0 = [0,1]$ and $C_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$ and so on.. Cantor Set is the intersection of all these sets $C_n$: \[ C = \bigcap_{n} C_n \] We can also see that $C$ is a contracting set, i.e $C_0 \supset C_1 \supset C_2 ... \supset C_n \supset ...$. If we denote the length of the intervals at step $n$ as $\Delta n$, we can see that $\Delta n = \frac{1}{3^n}$. Also let $N_n$ be the number of intervals at step $n$, thus $N_n = 2^n$.



Now we have got all we need to calculate the total length of the interval at the $n^{th}$ step which is given by \[l_n = \Delta n \times N_n =  (\frac{2}{3})^n\]Remember that we are doing the procedure of cutting into three and discarding the middle one infinitely many times, hence when $n \to \infty$, $l_n \to 0$, i.e the lengths contracting to end up being zero at the limit $n \to \infty$. Does that mean that our Cantor Set is empty?

Obviously not, since we can see easily see that the end points of the intervals that we create every time stays in the set. As in the case of $0, 1, \frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{2}{9}$ etc... Actually we can define a map \[x_n = \frac{1}{3^n} \,\,\,\,\,\,\,   \mathbb{N} \to C \]so that we can map all of the end points with a natural number. This implies that $\mathbb{N} \preceq C$. Since $\mathbb{N}$ is dominated by $C$, cardinality of $C$ is at least $\aleph_0$. In the mean time, since $C \subset [0,1]$, the cardinality of $C$ can not exceed $\aleph_1$, which is the cardinality of $[0,1]$ interval itself (proof omitted). The critical question is whether the cardinality of $C$ is also $\aleph_1$ and the suprising answer to that is YES!

In order to prove that, we can start by labeling the intervals by 0,1 sequences so that after each division, the left remaining part is denoted by $0$ and the right one by $1$. Let us start with naming the interval $[0,1] = I$. Then we divide it by 3 and leave out the middle one, we label the left part $I_0$ and the right one $I_1$. Then we continue the iterations as in the figure below:


All the elements of the Cantor Set can be traced back to upper levels by looking whether it is on the left interval or the right one at each level. For instance if we look for $\frac{1}{4}$, it is in the interval $I$, then in $I_0$ (left), then $I_{01}$ (right), then $I_{010}$(left again)... It alternates between the left interval and the right one. We have denoted the left and right intervals with $0$ and $1$ respectively, thus we can claim that each 0-1 infinite sequence corresponds to an element of our Cantor Set. If we denote the all 0-1 sequences as $l_{\{0,1\}}$, then it can be shown that $card (l_{\{0,1\}}) = \aleph_1$ (proof omitted). Since we have previously said that the cardinality of $C$ can not exceed $\aleph_1$ so we can finally deduce that:
\[l_{\{0,1\}} \preceq C\] thus,
\[ card(C) = \aleph_1\]We showed that the cardinality of the Cantor Set is $\aleph_1$. This means that starting from the interval $[0,1]$, we constructed a set of intervals by removing infinitely many of the them in between, then joining them together we ended up with a set with the same "number of elements" we started with in the first place!